본문 바로가기
  • Deep dive into Learning
  • Deep dive into Optimization
  • Deep dive into Deep Learning
카테고리 없음

<수학 공부 자료 리스트>

by Sapiens_Nam 2024. 1. 20.

* 책

 

<선형대수학>
1. 길버트 스트랭, Introduction to Linear algebra

2. Lay, Linear Algebra and Its Application

3. Axler, Linear Algebra Done right

4. Roman, Advanced Linear Algebra

 

<확률론/측도론>
1. A first course in Probability ( Ross)

2. Introduction to Probability (Bertsekas)

3. Foundation of the Thoery of Probability (Kolomogorov)
4. Probability and Stochastics (Cinlar)

5. Probability and Random Variables : Theory and Applications (Song et al)

6. A basic course in Measure and Probability : Theory for Applications ( Leadbetter et al)

 

<해석학>
1. Principles of mathematical Analysis (Rudin)

2. 해석학 첫걸음 (스티븐 애벗, 한빛아카데미)

3. Real Analysis : A Long-Form of Mathematics Textbook (Jay Cummings)

4. Understanding Analysis 2nd edition (Abbott)

 

<종합선물세트>
1. Algebra, Topology, Differential Calculus, and Optimization Theory For computer science and Mahcine Learning
(Jean Gallier et al. / 구글에 pdf 다운 가능)

 

<유튜브 강의>
1. The bright side of mathematics

2. 수학의 즐거움

 

추후 위상수학, 함수해석학, 미분방정식 등의 콘텐츠도 지속적으로 업데이트할 예정입니다.

 

728x90

댓글